CONDITIONS FOR THE EXISTENCE OF A PERIODIC SOLUTION OF A THIRD-ORDER DIFFERENTIAL EQUATION

(USLOVIIA SUSHCHESTVOVANIIA PERIODICHESKOGO RESHENIIA ODNOGO DIFFERENTSIAL' NOGO URAVNENIIA TRET' EGO PORIADKA)

PMM Vol.25, No.5, 1961, pp. 961-962
V. A. TABUEVA
(Sverdlovsk)
(Received June 5, 1961)

Let us consider the third-order differential equation

$$
\begin{equation*}
\dddot{x}+\alpha \ddot{x}+\beta \dot{x}+\sin x=e(t) \tag{1}
\end{equation*}
$$

Here a and β are positive constants, $e(t)$ is a square-integrable periodic function of period 2π. This equation is encountered, in particular, in the investigation of synchronous elements in television [1].

In this note the author derives, on the basis of a theorem proved by Barbashin [2], a criterion for the existence of a periodic (in t) solution of Equation (1).

Equation (1) is equivalent to the system of differential equations

$$
\begin{equation*}
\dot{x}=y, \quad \dot{y}=z, \quad \dot{z}=-\alpha z-\beta y-\sin x+e(t) \tag{2}
\end{equation*}
$$

We introduce the notation

$$
\varphi(x)=x-\sin x
$$

Then the system of first approximation takes the form

$$
\begin{equation*}
\dot{x}-y, \quad \dot{y}=z, \quad z=-x-\beta y-\alpha z \tag{3}
\end{equation*}
$$

Let us assume that the origin is a stable singular point of the system (3) of the type of a "generalized focus", i.e. we assume that the characteristic equation

$$
r^{3}+\alpha r^{2}+\beta r+1=0
$$

of the system (3) has one real root $\lambda<0$, and two complex roots $a \pm b i$, where a and b are real numbers, $a<0, b>0$. From the hypothesis that the origin is a stable point for the system (3), it follows that $a \beta>1$.

Let $\mu=\max (a, \lambda)$, i.e. μ is the larger one of the numbers a and λ. We consider the number

$$
B^{\circ}=\frac{M+\left(a^{2}+b^{2}+1\right) N}{\Delta}
$$

where

$$
\Delta=b\left[(a-\lambda)^{2}+b^{2}\right], M=b\left[(a-1)^{2}+b^{2}\right] \quad N=\sqrt{\frac{\Delta}{b}}\left(1+\sqrt{-\lambda}+\sqrt{\lambda^{2}+p}\right.
$$

Suppose that the following conditions are satisfied in a region D of the x, y, z-space:

$$
t \geqslant 0, \quad \max (|x|,|y|,|z|) \leqslant \varepsilon, \quad \varepsilon=\sqrt{\frac{-2 \mu}{B^{\circ}}}
$$

Barbashin's [2] theorem, which establishes the existence of a periodic solution, is applicable to a system of differential equations if a number of conditions are satisfied by that system. For the system (2), in addition to the conditions already indicated, one such restriction is the existence of a fundamental matrix $W(t, r)=\left\|w_{i k}(t, r)\right\|$ ($i, k=1,2,3$) for the system (3) satisfying the conditions

$$
\begin{equation*}
W(\tau, \tau)=E, \quad \| W(t, \tau) \leqslant B e^{\mu(t-\tau]} \tag{4}
\end{equation*}
$$

Here E is a unit matrix, B is a positive constant, $\mu<0$.
The evaluation of the fundamental matrix of the solution of system (3) which becomes the unit matrix when $t=r$, does not present any difficulties. Its elements are, obviously, given by

$$
\begin{gathered}
w_{1 k}=\frac{1}{\Delta}\left\{\Delta_{1 k} e^{\lambda(t-\tau)}+e^{a(t-\tau)}\left[\Lambda_{2 k} \cos b(t-\tau)+\Delta_{3 k} \sin b(t-\tau)\right]\right\} \\
w_{2 k}=\frac{d w_{1 k}}{d t}, \quad w_{3 k}=\frac{d^{2} w_{1 k}}{d t^{2}}
\end{gathered}
$$

where

$$
\begin{array}{lll}
\Delta_{11}=-\frac{b}{\lambda}, & \Delta_{21}=b \lambda(\lambda-2 a), & \Delta_{31}=\lambda\left(a^{2}-b^{2}\right)-\lambda^{2} a \\
\Delta_{12}=-2 a b, & \Delta_{22}=2 a b, & \Delta_{32}=-a^{2}+b^{2}+\lambda^{2} \\
\Delta_{13}=b, & \Delta_{23}=-b, & \Delta_{33}=a-\lambda
\end{array}
$$

In order to obtain an estimate of the norm $\|\|(t, r)\|$ of a matrix, we define the norm of an arbitrary vector $X=(x, y, z)$ and that of a
matrix as

$$
\|X\|=\max \quad(|x|,|y|,|z|) \quad\|W(t, \tau)\|=\max _{1 \leqslant i \leqslant 3} \sum_{k=1}^{3}\left|w_{i k}\right|
$$

It is easy to show that in the region D the following inequalities are satisfied:

$$
\begin{align*}
& \sum_{k=1}^{3}\left|u_{1 k}(t, \tau) e^{-\mu(t-\tau)}\right| \leqslant \frac{M+N}{\Delta} \\
& \sum_{k=1}^{3}\left|w_{2 k}(t, \tau) e^{-\mu(t-\tau)}\right| \leqslant \frac{M+\sqrt{a^{2}+b^{2}} N}{\Delta} \tag{5}\\
& \sum_{k=1}^{3}\left|w_{3 k}(t, \tau) e^{-\mu(t-\tau)}\right| \leqslant \frac{M+\left(a^{2}+b^{2}\right) N}{\Delta}
\end{align*}
$$

For the constant B, which estimates the norm $\left\|W(t, r) e^{-\mu(t-\tau)}\right\|$ and which occurs in the condition (4), one should select the number determined by the equation

$$
B=\frac{M+N}{\Delta} \text { when } a^{2}+b^{2} \leqslant 1, \quad \frac{M+\left(a^{2}+b^{2}\right) N}{\Delta} \text { when } a^{2}+b^{2}>1
$$

The next restriction on the system (2), which is required for the validity of the application of Barbashin's theorem, is the existence of a Lipschitz constant for the function $\phi(x)$ which satisfies the relation $(-\mu-L B)>0$.

In the considered region D, the Lipschitz constant for the function $\phi(x)=x-\sin x$ is the number

$$
L=\frac{\varepsilon^{2}}{2}=\frac{-\mu}{B^{\circ}}
$$

It is easily seen that it satisfies Equation (5). From here on we shall denote the left-hand side of Equation (5) by r. Then

$$
\Upsilon=-\mu \frac{B^{\circ}-B}{B^{\circ}}>0
$$

From what has been said we may conclude that the conditions of the theorem of Barbashin are satisfied [1]. Thus, we may state the follow* ing result for Equation (1).

Theorem. Suppose that conditions (4), (5) and
(A)

$$
\sup _{0 \leqslant t \leqslant 2 \pi}|e(t)| \ll \frac{\varepsilon Y}{2 B^{2}}
$$

(B) $\quad \int_{0}^{2 \pi}|e(t)| d t<\frac{\varepsilon}{2 B^{2}} e^{-2 \pi \gamma}\left(1-e^{-2 \pi \gamma}\right)$
(C) $\quad\left(\int_{0}^{2 \pi} e^{2}(t) d t\right)^{\frac{1}{2}}<\frac{\varepsilon}{2 B^{2}}\left(\frac{2 \gamma}{e^{4 \pi \gamma}-1}\right)^{\frac{1}{2}}\left(1-e^{-2 \pi \gamma}\right)$
are satisfied for the system (2).
Let $\delta=\epsilon / 2 B$. Then the following statements are true.

1) Every solution $X(t)$ of the system (2) is such that $\left\|X\left(t_{0}\right)\right\| \leqslant \delta$ does not leave the region D if $t \geqslant t_{0}$.
2) There exists a number $T>t_{0}$ such that $\|X(t)\| \leqslant \delta$ if $\left\|X\left(t_{0}\right)\right\| \leqslant \delta$ and $t>T$.
3) In the region D there exists an asymptotically stable periodic trajectory which attracts all other trajectories issuing from the region $\|X\|<\delta$ when $t=t_{0}$.

The numbers ϵ, B and γ are given above.

BIBLIOGRAPHY

1. Bakaev, Iu. N., Postroenie rabochikh zon sistem avtomaticheskogo regulirovaniia fazy (Construction of operating zones of automatic phase control systems). Izv. AN SSSR, OTN, Energetika i avtomatika No. 2, 1960.
2. Barbashin, E.A., 0 postroenii periodicheskikh dvizhenii (On the construction of periodic motions). PMM Vol. 25, No. 2, 1961.
